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ABSTRACT

This paper describes a two-dimensional model developed to study the

influence of convective flow on the concentration field ahead of a growing lamellar

eutectic, when one phase projects out into the melt creating a stepped interface. The

two dimensional convective flow field, which is periodic in the horizontal direction,

was computed numerically using the software FLUENT. The velocity field generated

due to the flow of melt over the steps was then incorporated into a finite difference

scheme employed to solve the concentration field. The average interracial composition

was calculated and converted to lamellar spacing using the Jackson and Hunt mini-

mum supercooling criterion. It was found that a stepped interface is more sensitive

to convection than a planar interface.



- 1. INTRODUCTION

The primary motivation for this work arises from experiments on eutectic

solidification in the reduced gravity environment of space. Some space-grown samples

exhibited marked structural differences from identically processed earth-grown sam-

pies [1,2]. For example, when the MnBi/Bi eutectic was solidified in space the average

fiber spacing A was half of what was obtained on earth [3]. The difference has been

attributed to the absence of convective currents at low g as compared to conditions

on earth. The application of a magnetic field to suppress convection showed the same

effect on the MnBi/Bi microstructure as solidification in space [10].

As a result of the above experimental observations, theoretical models have been

developed to determine the effect of convection on the spacing of eutectic alloys.

Baskaran and Wilcox [4] and Chandrasekhar et al. [5] developed a two-dimensional

model to study the effect of convection on the microstructures of lamellar eutectics.

Caram and Wilcox [7] developed a three dimensional numerical model for the influ-

ence of convection on rod-like eutectic microstructure.

Decantation experiments during the solidification of MnBi/Bi eutectic estab-

lished that the MnBi fibers project ahead of the Bi matrix [6]. In all the prior numer-

ical models developed to predict the effect of convection on eutectic microstructure

it had been assumed that the interface is planar. In the present work a lamellar

stepped structure was studied. This was selected rather than a rod structure for

computational ease; the diffusional domain of a lamellar eutectic is two dimensional

rather than three dimensional as in the case of a rod eutectic. The Jackson and Hunt

treatment [8] was assumed to be valid, and we performed calculations similar to those

of ref. [5]. The resulting conclusions are expected to hold for a rod structure in a

semi-quantitative sense. Details are given elsewhere [9].
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2. EQUATIONS

As the adjacent phases of a binary eutectic grow, atoms are rejected

into the melt due to partitioning. This partitioning creates a lateral composition gra-

dient, which generates lateral diffusion in order to redistribute the two components

across the interface and to sustain growth. As a result, the eutectic phase transfor-

mation is influenced by mass transfer processes. In addition to diffusion, convective

mass transfer generated by the flow along the solid liquid interface must be taken into

account.

The general steady state mass transfer equation for a binary mixture can be

written as:

DV2C__.VC=O (1)

where D is the diffusion coefficient, U is the velocity and C is the concentration of one

of the components. To account for the influence of convection in eutectic growth, a

well developed laminar shear flow was introduced in front of the solid-liquid interface,

normal to both the growth direction of the lamellae and to the lamellae themselves.

The velocity field generated by the flow of melt over the steps was computed nu-

merically. The melt was assumed to possess constant material properties, including

diffusivity D and kinematic viscosity v. The two dimensional flow field was assumed

to be periodic in the horizontal direction. The governing fluid flow equations were

written in a reference frame that moves vertically upward at the growth velocity. A

no-slip condition was used for the tangential component of the velocity at the inter-

face. The boundary at the top of the domain was placed at such a distance from the

interface that it did not influence either the flow field or the concentration field near

the interface.

The fluid velocity components Uy in the y direction and Ux in the x direction were

calculated using a software package called FLUENT. FLUENT is a computer code

created by Creare Incorporated for simulating a wide range of fluid flow problems.
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It usesa finite differencenumerical procedure to solve the Navier-Stokesequation.

The domain to be investigatedis divided into a finite numberof cellsand the partial

differential equation is discretized over these units to produce a sequence of algebraic

relations. An iterative scheme is then employed to solve for the equations and yield

the velocity components U_ and U_ at each point in the finite difference grid over the

problem domain.

The velocities obtained as above were incorporated into the governing mass trans-

fer equation, which was solved using finite difference techniques. The governing partial

differential equation for mass transfer was simplified as:

02C O=C Uv OC U_ OC =0 (2)
vqx 2 +_-'D 0y D 0x

The boundary conditions used for determining the solute concentration in the

melt ahead of the solid liquid interface are as follows.

The composition remains at the eutectic far from the interface:

C = C_ a_ y = co (3)

Due to conservation of matter at the interface, the flux of solute rejected at the

freezing interface is equal to the solute diffusing into the melt away from the interface.

This condition can be mathematically represented in the following form:

For a phase:

OC

D (_y),,=o =-Y (Cj-C_)

For _ phase, with a stepped interface:

OC

v (-g--j),,=_=-v (c,-c_,)

(4)

(5)

There is no side growth, i.e. along the side of the step there is no diffusion in the x

direction:

OC
_--_,,=o ,o,, = o (6)
k_Xl
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The concentration field is periodic owing to the periodicity of the lamellar structure:

C(_o,_) = C(_,_) = C(_,v ) n = I,2,.. (7)

The far field boundary condition, eel. 3, was tried for a stepped interface for

increasing values of y until the solution was independent of the domain size. It was

found in the initial computations that the computed average interface concentration

with a far field condition at y=3A/4 differed by less than 1% from that computed

with y=A/2. Hence in the subsequent computations we used C=C, at y= 3A/4.

The solid solubility was assumed to be negligible, so C_=0 and C_=I. The de-

gree of non-planarity of the interface was altered by giving various values to x, which

is the height by which the alternate lamellae project into the melt. If we define t¢ =

cA, then c was chosen in the range 0 to 1, because Chandrasekhar [6] reported that

the length-to-diameter ratio of the protruding MnBi rods averaged one.

In order to determine the effect of convection on the lamellar spacing we min-

imized the average interfacial undercooling AT. The treatment is similar to that in

Chandrasekhar and Wilcox [5]. To facilitate the numerical computations we non-

dimensionalized equation (2) to the following form, with the symbols defined in the

table of nomenclature:

02C O2C OC OC

OX---_+b-_+A 07-FY 0--_=o (8)

Since compositional changes occur over distances on the order of A, the dimensionless

distances were defined by X=x/A and Y=y/X. Note that A= AVID is a lamellar

spacing Peclet number and F - G,,A2/D is a convective Peclet number. Letting

S_ + 2Sa = 6, the non-dimensional forms of the boundary conditions are:

at Y = 3/4 C = C, (9)

aC

at Y = O O < X < S_IA, &/A < X < l, a'--Y = - A C_ (10)

OC
0 < Y < ,c, X = S,J)_ or g/A, a-_ = 0 (11)



s_!$ < x < ,515, oc = _ A (c, - 1) (12)
OY

For typical growth conditions on earth A is on the order of 0.1 and F is of order 100.

3. Results and discussion

Figure 3 shows a typical result, the the iso-concentration contours for a eutec-

tic of C_=0.3 with a step height of $/8 growing without the disturbing influence of

convection. Convection distorts the contours as shown in figure 4 for a convective

Peclet number F = 40. The computed concentration fields in the melt were converted

to lamellar spacing by calculating the average interfacial composition Ci and mini-

mizing the total interfacial undercooling AT. Following Chandrasekhar et al. [5] the

deviation parameters are defined as follows:

_,, = ( e,o -co)o - ( c,o -co)

_,_= ( _,, -Co)o- ( _,, -co)

(13)

(14)

where A_ is the difference between the deviation from the eutectic composition with-

out convection (G, = 0) and that with convection (G, > 0) averaged over the a

phase. Here AZ is the difference between the deviation from the eutectic composition

without convection (G, = 0) and that with convection (G,, > 0) averaged over the/3

phase. The subscript o indicates the values without convection.

The deviation from eutectic composition without convection was found to be

proportional to A = $ V/D:

( Cio -C_)o = A_ A (15)

( 6'i_ -C_)o = A_ A (16)

The analytical solution of Jackson and Hunt [8] gives the values of Ao and A_ for a

planar interface and no convection. From Jackson and Hunt [8] A = 0.121 for C,=0.3

and A = 0.135 for C,=0.5. From our numerical results, A = 0.119 for Cc=0.3 and A

= 0.136 for Ce= 0.5 for the planar interface. For a stepped interface with Ce =0.3
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and _=A/5 we found A = 0.129. For Ce=0.3 and n=A/4, A = 0.134.

Following Baskaran and Wilcox [4] the spacing between the lamellae is given by:

= 1 A A drJ

Differentiating f with respect to F we find df/dF and substitute this into eq. (17).

Polynomial fits for A/Ao as a function of Fo are shown in figures 5 to 7.

For C_=0.1 and a planar interface:

A/Ao =l+0.0016Fo+1.61X10 -SF_

For C¢ = 0.1 and I¢=A/8:

A/Ao =1 +0.0019Fo+2.28X10 -SF_

For C_ = 0.5 and a planar interface:

A/Ao = 1 + 0.0073 Fo- 0.00015 F_

For Ce = 0.5 and _=A/8:

A/Ao = 1 +0.0114Fo-0.0003 F_

For C_ = 0.3 and a planar interface:

A/Ao = 1 +0.00046Fo+9.80X10 -SF_

For C_ = 0.3 and a=A/5:

A/Ao = i ÷ 0.0076 Fo-0.0005 F_

4. Conclusions

Based upon the results obtained from the numerical analysis the fol-

lowing conclusions can be made:
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1. Increasingthe intensity of convectionincreasesthespacingbetweenthe lamellae.

2. For the sameconvectivePecletnumber, the increasein lamellar spacingof a

eutectic growing with a steppedinterface is muchhigher than the increasein

lamellar spacingobservedfor a eutectic growingwith a planar interface. That

is, the microstructure of steppedinterfaceis moresensitiveto convectionthan

a planar interface.

3. The increasein lamellar spacingobservedfor the samevalueof convectivePeclet

number is more for the eutectic growingwith a higher _, i.e. more non-planar.

That is, with increasingirregularity of the interfacethe eutecticexperiencesan

increasedchangein the lamellar spacingdue to convection.

4. The effectof convectionis negligible if the flow velocity is very small in magni-

tude, i.e. F is small (<1).
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Nomenclature

A_ -- constant in equation 15

A_ = constant in equation 16

Cc = Eutectic mass fraction

Ci - Interfacial melt composition

Ci = Average interfacial melt composition

C_ = Composition of the alpha phase (assumed 0 here)

C_ = Composition of the beta phase (assumed 1 here)

f = zx/h
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G== Gradient of convectivevelocity in the y direction [s-1]

So = Half width of a phase [m]

T = Temperature [K]

AT = Total interfacial undercooling [K]

U = Convective velocity [m/s]

V = Growth rate [m/s]

x = Distance along interface from beginning of a phase [m]

X = Dimensionless distance along interface (x/A)

y = Distance into the melt from interface [m]

Y = Dimensionless distance into the melt from interface (y/A)

a = The A-rich phase of the binary eutectic

fl = The B-rich phase of the binary eutectic

6 = So + 2S#

A = (6'_o -C_)o - (C_o -C,), the deviation parameter

F = G,A2/D, Peclet number for convection

Fo = G=A_/D

I¢ = The height of the step, as a fraction of A

A=

g=

p=

Lamdlar spacing [m]

AV/D Lamellar spacing based Peeler number

Viscosity of the melt ( 4 X 10 -3 kg/m.s used here)

Density of the melt ( 800 kg/m 3 used here)
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